Multiplicative updates for non-negative projections

نویسندگان

  • Zhirong Yang
  • Jorma Laaksonen
چکیده

We present here how to construct multiplicative update rules for non-negative projections based on Oja’s iterative learning rule. Our method integrates the multiplicative normalization factor into the original additive update rule as an additional term which generally has a roughly opposite direction. As a consequence, the modified additive learning rule can easily be converted to its multiplicative version, which maintains the non-negativity after each iteration. The derivation of our approach provides a sound interpretation of learning nonnegative projection matrices based on iterative multiplicative updates—a kind of Hebbian learning with normalization. A convergence analysis is scratched by interpretating the multiplicative updates as a special case of natural gradient learning. We also demonstrate two application examples of the proposed technique, a non-negative variant of the linear Hebbian networks and a non-negative Fisher discriminant analysis, including its kernel extension. The resulting example algorithms demonstrate interesting properties for data analysis tasks in experiments performed on facial images. r 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative updates For Non-Negative Kernel SVM

We present multiplicative updates for solving hard and soft margin support vector machines (SVM) with non-negative kernels. They follow as a natural extension of the updates for non-negative matrix factorization. No additional parameter setting, such as choosing learning, rate is required. Experiments demonstrate rapid convergence to good classifiers. We analyze the rates of asymptotic converge...

متن کامل

Blind separation of non-negative source signals using multiplicative updates and subspace projection

In this paper, we consider a noise-free blind source separation problem with independent non-negative source signals, also known as non-negative independent component analysis (NICA). We assume that the source signals are well-grounded, which means that they have a non-vanishing pdf in a positive neighborhood of zero. We propose a novel algorithm, referred to as multiplicative NICA (M-NICA), wh...

متن کامل

Multiplicative Updates for L1-Regularized Linear and Logistic Regression

Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regu...

متن کامل

Global convergence of modified multiplicative updates for nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is the problem of approximating a given nonnegative matrix by the product of two nonnegative matrices. The multiplicative updates proposed by Lee and Seung are widely used as efficient computational methods for NMF. However, the global convergence of these updates is not formally guaranteed because they are not defined for all pairs of nonnegative matrices...

متن کامل

Efficient Multiplicative Updates for Support Vector Machines

The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization (NMF) problem. This allows us to derive a novel multiplicative algorithm for solving hard and sof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2007